
Corporate Backgrounder

Object Linking and Embedding (OLE)
in Microsoftâ Windowsä Operating System Version 3.1

An Overview of Data Sharing Technology in Windows 3.1

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399

Executive Summary

Object linking and embedding (OLE) is a major feature of Microsoftâ
Windowsä version 3.1 that lets you achieve real application integration.
With OLE, Windows 3.1 can enhance the way you work with your
computer.

What is OLE?

OLE lets you combine information from a number of different applications
into a single document. OLE is:

· Powerful. It lets you easily create documents that incorporate
information from a variety of sources. OLE also gives you an easy
way to link data that resides in more than one application.
Information that is made current in one application will be
automatically updated in all other linked applications.

· Easy to use. You just choose a simple menu command to integrate
data from one application into another application, and double-click
to edit that information.

· Fully integrated. OLE functionality is built into the Windows
operating system so there’s nothing extra to obtain or install. OLE is
an open standard, which means anyone developing applications for
Windows can include OLE capabilities. The standard includes
guidelines for how the OLE user interface should work, so
procedures for using OLE will be similar from one application to the
next.

Benefits of OLE

OLE offers a number of key benefits to people who work with
compound documents. You can:

· Organize your work. When you embed objects in a document,
they’re all stored in the same file as the document itself, so they’re
easy to keep track of. That’s especially useful when you want to
send someone a document that consists of many independent pieces.
You’re also freed from the tedious jumping back and forth between
applications as you try to put your documents together.

· Use the best applications. You can choose the best application for
creating each part of your document—now, and in the future. OLE
client applications can store any data format—even ones that haven’t
been invented yet.

Object Linking and Embedding (OLE) ii

· Stay current. Linking lets you include data from other applications
in your document without greatly increasing its size. Several
documents can be linked to a single object, so changes in the object
appear in all of the documents. That’s a good way to make sure
different users stay in sync with the latest data.

Object Linking and Embedding (OLE) iii

Table of Contents
µ
The Evolution of Shared Information 1
First, there was electronic cut and paste 1
Then, there was dynamic data exchange 1
Now, there’s object linking and embedding 2

Some OLE Fundamentals 3
Server 3
Client 3
Object 3
Compound documents 3
Embedding 4
Linking5
Packaging 5

How to Use OLE 7
To embed an object 7
To link an object 8
Additional ways to use OLE 8
Embed a diagram. 8
Link to a spreadsheet. 9
Package video sequences. 9
Package your own application. 9
Creating a compound document with OLE 10

How OLE Works 11

Appendix A: Common Questions and Answers aboutObject Linking and Embedding 13

Appendix B: Features of OLE that DDE Does Not Support 15

Object Linking and Embedding (OLE) iv

The Evolution of Shared Information

Before we go into a more detailed look at OLE, it might be helpful to
understand the evolution of moving and sharing information among
applications on PCs that eventually led to the OLE concept. Soon after
people discovered the benefits of personal computers, they also
discovered one of the limitations: If you wanted to bring together
different kinds of data such as text and graphics, the only way to do it
was to print all of the files individually and then produce a compound
document with scissors, tape, and a photocopier. Then things started to
improve.

First, there was electronic cut and paste

The first steps beyond scissors and tape were the electronic cut-and-paste
capabilities found in the Windows environment. The typical procedure
was to create text, a drawing, a spreadsheet, or other piece of information
in one application, then electronically cut or copy the text, drawing, or
spreadsheet you wanted to the Windows Clipboard, which provided the
basic means for moving data between applications. Then you would
open your target document in a second application and paste the text,
spreadsheet, or drawing where you wanted it. Your final document then
contained a static bitmap or metafile image of the information created in
the other application.

The disadvantage of the electronic cut-and-paste process became clear
when you needed to revise the information you pasted into your
document. You had to find the right file (if you had the foresight to save
the original version of what you pasted into your document), load it into
the application that created it, make the changes, and recopy the revised
version into your final document. If you didn’t save the original, you
started over from scratch.

Then, there was dynamic data exchange

Dynamic data exchange (DDE) was the next step in the evolution of
moving data from one application to another. With DDE, you can create
an electronic link between two files (for example, you can link a
Microsoft Excel chart to a Microsoft Word for Windows document).
When the chart in Microsoft Excel is changed, that change also appears
in the Word report where the chart has been pasted. This frees you from
having to remember changes in one document that affected information
in others.

Object Linking and Embedding (OLE) 1

DDE has some limitations, however. With DDE, you get the data from
the Microsoft Excel spreadsheet chart in your Word document, but not
necessarily the formatting from Microsoft Excel. It’s up to the receiving,
or client, application (Word) whether it will be displayed correctly. For
that reason, the client application must be able to understand the data it
gets via DDE from the other application.

Another limitation of DDE is that it’s only good for bringing data into a
document. It doesn’t give you an easy way to get at the application that
created the imported data or the original source file so you can quickly
make changes. You still need to open the second application and find the
source file to make the adjustments you want. (For a more detailed look
at the features in OLE that DDE did not support, see Appendix B.)

Now, there’s object linking and embedding

OLE is the latest step in the evolution of application integration. By
using OLE to embed information, you can combine text, charts,
spreadsheet sections, even voice instructions (if you have the right
hardware) into a single document, regardless of the data format. OLE
lets you instantly call up the application that created the information
from within your new document so you can change embedded
information “on the fly.” With OLE, the data you are combining can
actually be stored in the file, so you don’t have to find the original
source file before making changes.

µ §

Object Linking and Embedding (OLE) 2

Some OLE Fundamentals

There are a few fundamental terms and concepts that will help you better
understand OLE technology. The following definitions will be used in
this document.

Server

An application that creates information to be linked or embedded into
another application. Server (or source) applications also perform
operations (such as editing or playing) for some types of OLE objects
such as spreadsheet charts. Microsoft Excel would be the server
application for a spreadsheet chart that you wanted to embed in a Word
document.

Client

An application or document that receives, stores, and displays objects
created by server applications. If you use Word to create a report and
then import your spreadsheet chart from Microsoft Excel, Word would
be the client (or container) application in the exchange.

Object

Anything that can be linked or embedded in a client document, such as a
drawing from Microsoft Paintbrushä, a spreadsheet from Microsoft
Excel, or a piece of digitized sound. Even an MS-DOSâ operating
system–based command line can be an object.

Compound documents

These are documents that contain data (in different formats) from more
than one application. A compound document is put together in an OLE
client application, such as Word for Windows. That document can
include linked or embedded objects—a spreadsheet, a drawing, a voice
recording, or the output of any other Windows-based application.

Object Linking and Embedding (OLE) 3

Embedding

You can think of embedding as a more powerful version of electronic
cutting (or copying) and pasting between applications. In both cases, the
data that makes up the object is moved from the server application and
stored in the client document. But there are two major differences
between embedding and electronic cutting and pasting:

1. The client application doesn’t have to understand the data in the
embedded OLE object; in fact, it doesn’t even have to access it. The
object may contain an image of the data that the client application
can display, or (for sound recordings, for example) it may contain an
icon that marks the object’s place in the document.

2. When you double-click the image or icon, the Windows operating
system starts the server application. You can use the server
application to edit the object. When you quit the server application,
you return automatically to the compound document. The image of
the object in the compound document is updated to reflect the
changes you just made.

Embedding means new possibilities for data exchange. For example:

· When you send the compound document electronically to someone
who has a multimedia-capable machine, they can double-click an
icon to hear a sound recording or see a video sequence. The server
application starts, plays the sound or video, and then quits and
returns them to the compound document.

· You can electronically mail someone a report and if the person
receiving the report has the same applications you do, they can view
and change information you have embedded in the report, then
electronically mail it back to you.

· OLE makes information highly portable. If you aren’t on an
electronic mail system, you can give someone a report on a floppy
disk. They can access information (a spreadsheet, for example) that
you have embedded in the document, make changes, and give it back
to you. There are no links to break, and they don’t need to gain
access to a source file on your machine in order to make edits.

Advantages of embedding include the fact that you don’t need separate
source files in order to pass information among documents or among

Object Linking and Embedding (OLE) 4

members of your workgroup. Documents become totally self sufficient.

Some disadvantages of embedding include the fact that file sizes get
larger when you embed information in them. In addition, information
must be manually updated, since the information is embedded in the
document and not linked to a source file.

Linking

Linking in OLE is similar to DDE. Unlike embedding, with linking you
store a separate source file for the data you want to share with other
applications, and a pointer (path) to that source file goes into your
document. Documents are linked so that when the source file changes,
all the documents linked to that source file change as well.

These link updates can be either automatic or manual. If your client
document (your Word document, for example) is open, automatic links
are updated when you make changes to the Microsoft Excel chart that is
linked to the Word document. If the client document is closed when the
changes are made, you will be asked when you open the document if you
want to update the links. Manual links are updated only when you select
a menu command to do so.

The advantages of linking include smaller file sizes than with
embedding, since all that exists in a linked document is the path to the
source file. You can also make sure that multiple documents all contain
updated information.

Disadvantages to linking include the fact that if you move the source file
from the path specified in the linked documents, you must respecify the
new path to make the links current. If the source file is deleted, the
information embedded in the client document that is linked to that
source file can no longer be updated, though a visual representation of
the information remains in the document.

Packaging

With Windows operating system version 3.1, you can now embed
objects from applications that aren’t specifically designed as OLE
servers. You do this by using a program for Windows 3.1 called Object
Packager (which is included in the Accessories Group in Program
Manager). You create a package which consists of an icon (which you
can customize) and a path to the server application and the correct file.
That package is then embedded in the client document.

Object Linking and Embedding (OLE) 5

For example, you might have occasion to embed information from a
spreadsheet that was designed to run on the MS-DOS but not the
Windows operating system—Lotusâ 1-2-3â for MS-DOS, for instance.
You could use Object Packager to package the spreadsheet information
and embed it in an electronic mail message or some other application,
even though the spreadsheet information is not from an OLE-capable
application.

While a package can originate from any application that runs in
Windows, they can only be embedded in applications that have been
specifically designed as OLE clients. Consult with your software vendor
or read your software documentation to determine if your applications
are designed as OLE clients.

A package behaves just like any other embedded object. When you
double-click the package icon, the Windows operating system starts the
server application, which can display a chart, play a recording, or
perform whatever function the application provides. You can both view
the object and edit it.

Object Linking and Embedding (OLE) 6

How to Use OLE

With OLE, you can build a compound document in four ways:

1. Embed information from another OLE application in the
document. You see the object in the new document exactly as it
appears in its original application. The embedded object includes
data that allows the server application to launch from within the
client application so that the embedded object can be edited.

2. Set up a link between your document and a file created in another
OLE application. You see the object as it appears in its original
application, but the link doesn’t allow you to launch the server
application. The source file must be opened in the server application
and then edited. All links to the source file are automatically
updated.

3. Link an embedded object. With this feature, you can maintain a
link to the source document in the compound document as described
above and also launch the server application from within the client
application.

4. Embed or link information from a non-OLE application. An
icon appears in the compound document to represent the object. This
is done through Object Packager.

Here are the general procedures for embedding and linking according to
the OLE specification.

To embed an object

There are two different ways to embed an object. You can start the
process in either the compound document where you are working, or in
the server application where you want to create the object. For example,
you are using a word processor to create a document called
REPORT.DOC. While you’re working on REPORT.DOC, you decide
you want to add information on profits for the month. The best way to
create this information is in a spreadsheet program. You open the
spreadsheet program, create the spreadsheet, highlight the information
you want, and embed it into the report. (Please note that the user
interface for embedding depends on the client application.) This
information can then be edited later on. The spreadsheet does not have to
be saved as a separate file, since it all the information needed to access
the spreadsheet is contained in the host document.

Some applications also allow you to create an embedded object from
within the client application.

Object Linking and Embedding (OLE) 7

Object Linking and Embedding (OLE) 8

To link an object

While you are analyzing construction costs for the new factory that you
are describing in REPORT.DOC, you decide to link parts of a monthly
expense report that is itemized in a spreadsheet. Instead of creating an
embedded object, you decide to link the spreadsheet that already
contains the information you need to your report. By linking the two
documents, you know that every month your report will be automatically
updated when the spreadsheet is updated.

The link is represented visually in the client document by the part of the
spreadsheet that you selected. However, because it is only linked, you
have to open the source file in the application in which it was created in
order to edit the information. Once the edits are completed and saved, all
the links to the source file are automatically updated.

You can also do a link to an embedded object, depending on whether the
application you are using supports this feature. With a link to an
embedded object, you can access the server application from within the
client application while maintaining a link to the original document.

Additionally, you can package a document or piece of information using
Object Packager. The package itself is embedded, but the information
contained in the package can be linked to a source document. Double-
clicking the icon that represents the package in the client document
launches the server application and loads the information contained in
the package. Packages are particularly useful for including whole
documents inside other documents, particularly for providing further
information on a topic, and for inserting MS-DOS–based command
lines.

Please note that you can only insert a package into an application that
supports object linking and embedding.

Additional ways to use OLE

The following scenarios illustrate more specifically some of the ways
you can use OLE.

Embed a diagram.
It’s your job to prepare the monthly status report on the new factory
construction project. It would be easier to explain what’s happening if
you could refer to an up-to-date diagram of the factory.

Object Linking and Embedding (OLE) 9

Object Linking and Embedding (OLE) 10

You create the diagram in your favorite drawing program and embed
it in your report. Each month, when it’s time to prepare the next
report, you just double-click the drawing. The drawing program starts
with the factory layout loaded, so you can update the diagram. When
you quit the drawing program, you’re back in your report document
with the updated diagram in place.

Link to a spreadsheet.
Some of the people who receive your factory status report need up-to-
date cost information, sometimes week by week or day by day. The
accounting department maintains the cost information in a large
spreadsheet.

You add an object to your report that is linked to the summary cells in
the accounting department’s spreadsheet. Now you distribute the
online version of the status report by electronic mail. Whenever
someone opens the online report, they automatically have the latest
summary figures. If they need more detailed cost information, they
can double-click the summary information to open the complete
spreadsheet.

Package video sequences.
You’re writing a procedure manual for your factory workers that will
be available online at workstations that have multimedia capabilities.
Most of the manual consists of brief procedures and checklists written
as job aids for experienced workers. But your inexperienced workers
need more detailed instruction.

You use Object Packager (found in the Accessories Group in the
Windows 3.1 Program Manager) to embed video sequences that show
detailed instructions for various procedures. When a worker needs to
know more about a procedure, two mouse clicks on an icon start the
video player program and play the video right on the computer
monitor.

Package your own application.
Your transportation scheduling program—an application you
developed within your company—plans the routes your trucks will
take each day. The supervisors at your warehouses need that
information from time to time.

You link the output from that program to your daily order status

Object Linking and Embedding (OLE) 11

report, which you maintain in Microsoft Excel and distribute over
your network. Now when the supervisors need to see the
transportation schedule, it takes just two clicks on an icon to display it.

Object Linking and Embedding (OLE) 12

Creating a compound document with OLE

The following illustration shows an example of an OLE compound
document. It’s a draft of a report on a proposed new factory that the
author is putting together to hand over to the graphic design team. In
addition to the text of the report, the author also wants to use:

· Part of a spreadsheet and graph that show financial analysis.

· Scanned images of several photos.

· Slides from a presentation.

· An artist’s rendering of the factory that’s under construction.

· A floor plan of the factory.

· A bitmap of the company’s new logo.

· Recorded instructions to the graphic designers.

This is a good example of application integration: The author knows
what kinds of information needs to be included in the document and can
use the best program available to create each type of information.

µ §
The two-headed arrows in the diagram illustrate that each of the objects
—whether linked or embedded—is a dynamic, changeable element.

Once the author has assembled these objects in the compound document,
he can double-click any of them and OLE will open the application that

created the object so that it can be edited. When the author exits the
server application, OLE automatically returns to the compound

document.

Object Linking and Embedding (OLE) 13

How OLE Works

In OLE, information is exchanged between applications as objects.
Objects are said to be “opaque” to the client application, because the
client doesn’t access the object and doesn’t need to understand the data
it contains. Instead, the client application simply calls application
programming interfaces (APIs) in the OLE dynamic-link library (DLL)
whenever it needs to display an object or invoke the object’s server
application.

µ §

Objects are stored as part of the compound document file. An embedded
object contains the native data from the server application and the name
of the application. A linked object contains the name of the server
application and the complete path to the server file. (If you move the
linked file or change its name, the link is broken, but you can easily
reestablish the link.)

Both kinds of objects can also contain presentation information such as a
metafile image of the source information. This allows the client
application to display objects without having to invoke the server
applications.

The server and client applications and the OLE libraries must all be on
the same computer. Linked objects, however, need not be on the same
computer. In fact, keeping the source file on a network file server and
linking to it from several documents is an excellent way to make sure
that users in different locations all have the most current data.

µ §

When server applications are installed on the computer they register
themselves in the system registration database (REG.DAT). When a
client activates a linked or embedded object, the client library finds the
listing for the server application in the database and uses the information
there to start that application server. Client applications refer to
REG.DAT for the list of OLE server applications to display in the Insert
Object dialog box and for the name of the server application for the
Paste Special dialog box.

Object Linking and Embedding (OLE) 14

Appendix A: Common Questions and Answers about
Object Linking and Embedding

Q: Can you establish an OLE link to data on a mainframe?

A: Yes, you can establish a link to the raw data so that when the data on
the mainframe changes, it changes on your PC in the application that
you use to receive the data. You can use a server application to capture
the mainframe data and package it, and then embed it in another client
application where you create reports. Once the link is established, a
change in the mainframe data will trigger an automatic change in the
spreadsheet and, subsequently, in the document.

Q: What happens when you send an OLE document to a user who
doesn’t have the server application on his or her machine?

A: The person who doesn’t have the server application will still be able
to see the presentation of the OLE object. However, they won’t be able
to edit it. If they double-click the presentation, an error message will
appear telling them that the server application cannot be found. (If the
second user passes the document on to a third user who does have the
server application, the third user will be able to edit the linked or
embedded object.)

Q: Would you ever need to use DDE instead of OLE?

A: OLE is a superset of DDE, so there may be instances where a DDE
link is preferable. Suppose you want to bring some data from a
spreadsheet into a word processing document, but you want to format
the data in the word processor instead of presenting it in its spreadsheet
form. If you embed the data, you can’t format it in the word processor;
but, if you link it, you can also format it.

Q: When would you use Paste Link or Update Link, as in Windows
environment 3.0?

A: Paste Link is still the command to use in the client document to add
a linked object. By default, the link you create will be an automatic link.
If you change the link to a manual link, then you will need to use the
Update Link command whenever you want to update the information in
the client document.

Object Linking and Embedding (OLE) 15

Q: If my document contains a link to a file on a network server, will
OLE establish the network connection when I double-click the object?

A: Yes. If the network server is password-protected, Windows will ask
you to enter the password. If the net server cannot be located or
accessed, you will get a message that says “Link not found” along with a
Change Link dialog box that will let you browse for the net connection.
Then you can quickly rebuild the link so you can view the object.

Q: How are the dynamic-link libraries used?

A: Applications use three dynamic-link libraries, OLECLI.DLL,
OLESVR.DLL and SHELL.DLL to implement object linking and
embedding. Object linking and embedding is supported by
OLECLI.DLL and OLESVR.DLL. The system registration database is
supported by SHELL.DLL. These libraries may be included with any
products developed for Windows version 3.1, to ensure that the products
will run with Windows version 3.0.

Q: How does communication happen between OLE libraries?

A: Client applications use functions from the OLE API to inform the
client library, OLECLI.DLL, that a user wants to perform an operation
on an object. The client library uses DDE messages to communicate
with the server library, OLESVR.DLL. The server library is responsible
for starting and stopping the server application, directing the interaction
with the server’s callback functions, and maintaining communication
with the client library.

When a user modifies an embedded object in a server application, the
server application notifies the server library of changes. The server
library then notifies the client library, and the client library calls back to
the client application, informing it that the changes have occurred.
Typically, the client application then forces a repaint of the embedded
object in the document file. If the user changes a linked object in the
server application, the client library is notified that the object has
changed and should be redrawn.

Object Linking and Embedding (OLE) 16

Appendix B: Features of OLE that DDE Does Not Support

OLE Feature Description

Extensibility to future
enhancements

The OLE libraries may be updated in future
releases to support new data formats, link
tracking, and in situ editing.

Persistent embedding and linking
of objects

The OLE libraries do most of the work of
activating objects when an embedded
document is reopened, by reestablishing the
conversation between a client and server. In
contrast, establishing a DDE link is the
responsibility of either the user (if the link is
not persistent) or of the application (if the link
is persistent).

Rendering of common data formats The OLE libraries assume the burden of
rendering common data formats in a display
context. DDE applications must do this work
themselves.

Server rendering of specialized data
formats

The OLE libraries facilitate the rendering of
specialized data formats in the client’s display
context. The server application or object
handler actually performs the rendering. The
client application has to do very little work to
render the embedded or linked data in its
display context.

Activating embedded and linked
objects

The OLE libraries support activating a server
to edit a linked or embedded object.
Activating servers for data rendering and
editing is beyond the scope of DDE.

Creating objects and links from the
Clipboard

The OLE libraries do most of the work when
an application is using the Windows
Clipboard to link or exchange objects. In
contrast, DDE applications must call the
Windows Clipboard functions directly to
perform such operations.

Creating objects and links from
files

The OLE libraries provide direct support for
using files to exchange data. No DDE
protocol is defined for this purpose.

Object Linking and Embedding (OLE) 17

The information contained in this document represents the current view of Microsoft Corporation
on the issues discussed as of the date of publication. Because Microsoft must respond to
changing market conditions, it should not be interpreted to be a commitment on the part of
Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the
date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

ã 1992 Microsoft Corporation. All rights reserved. Printed in the United States of America.

Microsoft and MS-DOS are registered trademarks and Windows is a trademark of Microsoft Corporation.

Lotus and 1-2-3 are registered trademarks of Lotus Development Corporation. Paintbrush is a trademark of ZSoft Corporation.

Object Linking and Embedding (OLE) 18

	Executive Summary
	What is OLE?
	Benefits of OLE

	Table of Contents
	The Evolution of Shared Information
	First, there was electronic cut and paste
	Then, there was dynamic data exchange
	Now, there’s object linking and embedding

	Some OLE Fundamentals
	Server
	Client
	Object
	Compound documents
	Embedding
	Linking
	Packaging

	How to Use OLE
	To embed an object
	To link an object
	Additional ways to use OLE
	Embed a diagram.
	Link to a spreadsheet.
	Package video sequences.
	Package your own application.

	Creating a compound document with OLE

	How OLE Works
	Appendix A: Common Questions and Answers about Object Linking and Embedding
	Appendix B: Features of OLE that DDE Does Not Support

